首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   4022篇
  免费   455篇
  国内免费   752篇
化学   4907篇
晶体学   98篇
力学   28篇
综合类   11篇
数学   6篇
物理学   179篇
  2024年   3篇
  2023年   25篇
  2022年   59篇
  2021年   148篇
  2020年   229篇
  2019年   177篇
  2018年   148篇
  2017年   150篇
  2016年   235篇
  2015年   200篇
  2014年   230篇
  2013年   338篇
  2012年   478篇
  2011年   259篇
  2010年   227篇
  2009年   251篇
  2008年   268篇
  2007年   281篇
  2006年   233篇
  2005年   214篇
  2004年   255篇
  2003年   168篇
  2002年   89篇
  2001年   63篇
  2000年   56篇
  1999年   75篇
  1998年   45篇
  1997年   52篇
  1996年   41篇
  1995年   36篇
  1994年   30篇
  1993年   23篇
  1992年   31篇
  1991年   19篇
  1990年   16篇
  1989年   8篇
  1988年   20篇
  1987年   6篇
  1986年   12篇
  1985年   6篇
  1984年   2篇
  1983年   2篇
  1982年   7篇
  1981年   4篇
  1977年   2篇
  1976年   1篇
  1975年   1篇
  1974年   1篇
  1973年   2篇
  1972年   2篇
排序方式: 共有5229条查询结果,搜索用时 31 毫秒
31.
A novel series of mixed-ligand complexes of 5,5′-{(1E,1E′)-1,4-phenelynebis(diazene-2,1-diyl)}bis(quinolin-8-ol) (H2L1) as a primary ligand and 4-aminoantipyrine(L2) as a secondary ligand with Mn(II) ion were prepared using two general formulae: [Mn2(H2L1)2(L2)2X4].4Cl (X = OH2( 1 ), ONO2( 2 ), Cl=nil; OAc( 3 ), Cl = nil) and [Mn2(H2L1)(L2)2(O2SO2)2]( 4 ). Free ligands and their complexes were characterized. Electronic absorption spectra of the mixed-ligand complexes indicate a distorted octahedral geometry around the central metal ion, and the anions X are in the axial positions for all compounds. The ligands behave in a neutral bidentate manner, through nitrogen atoms and oxygen atoms of the carbonyl group (L2), whereas H2L1 coordinated through nitrogen and OH groups as a neutral bidentate ligand. All complexes do not contain coordinated water molecules, but complex ( 1 ) contains four water molecules. The water molecules are removed in a single step. The complexes exhibited magnetic susceptibility corresponding to five unpaired electrons. The antimicrobial activity of the Mn(II) mixed-ligand complexes ( 1–4 ) against two gram-positive bacteria, three local gram-negative bacteria, and three fungi species was tested. Mn(II) mixed-ligand complex ( 2 ) exhibited significant antibacterial activity against Bacillus cereus, Staphylococcus aureus, Escherichia coli, Klebsiella pneumoniae, and Pseudomonas sp. Mixed-ligand complex ( 2 ) exhibited a high potential cytotoxicity against the growth of human lung cancer cells.  相似文献   
32.
Treatment of [Cp*RuCl2]2, 1 , [(COD)IrCl]2, 2 or [(p-cymene)RuCl2]2, 3 (Cp*=η5-C5Me5, COD= 1,5-cyclooctadiene and p-cymene=η6-iPrC6H4Me) with heterocyclic borate ligands [Na[(H3B)L], L1 and L2 ( L1 : L=amt, L2 : L=mp; amt=2-amino-5-mercapto-1,3,4-thiadiazole, mp=2-mercaptopyridine) led to the formation of borate complexes having uncommon coordination. For example, complexes 1 and 2 on reaction with L1 and L2 afforded dihydridoborate species [LAM(μ-H)2BHL] 4 – 6 ( 4 : LA=Cp*, M=Ru, L=amt; 5 : LA=Cp*, M=Ru, L=mp; 6 : LA=COD, M=Ir, L=mp). On the other hand, treatment of 3 with L2 yielded cis- and trans-bis(dihydridoborate) species, [Ru{(μ-H)2BH(mp)}2], cis- 7 and trans- 7 . The isolation and structural characterization of fac- and mer-[Ru{(μ-H)2BH(mp)}{(μ-H)BH(mp)2}], 8 from the same reaction offered an insight into the behaviour of these dihydridoborate species in solution. Fascinatingly, despite having reduced natural charges on Ru centres both at cis-and trans- 7 , they underwent hydroboration reaction with alkynes that yielded both Markovnikov and anti-Markovnikov addition products, 10 a – d .  相似文献   
33.
Gallium(III) catecholates with bipyridine ligand [(3,5-Cat)Ga(bipy)2]I and (3,6-Cat)GaI(bipy) (Cat is di-tert-butylcatecholate) were synthesized and characterized by single-crystal X-ray diffraction. The appearance of near-infrared ligand-to-ligand charge transfer for pentacoordinate complex was observed.  相似文献   
34.
ABSTRACT

We present the results of a combined experimental and computational study of the structures of gas-phase M+(N2O)n (M?=?Li, Al) complexes. Infrared spectra were recorded in the region of the N2O asymmetric (N?=?N) stretch using photodissociation spectroscopy employing the inert messenger technique. Unlike in our previous studies on M+(N2O)n (M?=?Cu, Ag, Au and M?=?Co, Rh, Ir) complexes, N– and O–bound isomers in this case are near isoenergetic and are not distinguished spectroscopically at this resolution. In the case of Li+ complexes, there is, however, evidence for the presence of bound N2 moieties, indicating the presence of inserted, OLi+N2(N2O)n–type structures. The weak N2 band lies to the blue of the signature of molecularly N– and O–bound ligands and is well–reproduced in the simulated spectra of energetically low-lying structures computed from density functional theory. No such inserted isomers are observed in the case of Al+(N2O)n complexes whose infrared spectra can be understood on the basis of molecularly-bound N2O ligands. The differences in M+(N2O)n structures observed for these closed–shell, ns2, metal centres relative to other metal cations are discussed in terms of the likely bonding motifs.  相似文献   
35.
A palladium–fibroin complex (Pd/Fib.) was prepared by the addition of sonicated fibroin fiber in water to palladium acetate solution. Pd (OAc)2 was absorbed by fibroin and reduced with NaBH4 at room temperature to the Pd(0) nanoparticles. Powder‐X‐ray diffraction, scanning electron microscopy–energy‐dispersive X‐ray spectroscopy, Fourier transform‐infrared, CHN elemental analysis and inductively coupled plasma‐atomic emission spectroscopy were carried out to characterize the Pd/Fib. catalyst. Catalytic activity of this finely dispersed palladium was examined in the Heck coupling reaction. The catalytic coupling of aryl halides (‐Cl, ‐Br, ‐I) and olefins led to the formation of the corresponding coupled products in moderate to high yields under air atmosphere. A variety of substrates, including electron‐rich and electron‐poor aryl halides, were converted smoothly to the targeted products in simple procedure. Heterogeneous supported Pd catalyst can be recycled and reused several times.  相似文献   
36.
Three new metal complexes [Cu(L)2] (1), [Co(L)2] (2) and [Zn(L)2] (3) have been prepared by the reaction of hydrated salts of metal (II) acetate with new Schiff base ligand HL, [2‐((4‐(dimethylamino)phenylimino)methyl)‐4,6‐di‐t‐butylphenol] and characterized by different physico‐chemical analyses such as elemental analysis, single XRD, 1H NMR, FTIR and UV–Vis spectroscopic techniques. Their biomolecular docking, antimicrobial and cytotoxicity studies have also been demonstrated. The proposed structure of Schiff base ligand HL and complex 2 are confirmed by Single crystal X‐ray crystallography study. This analysis revealed that metal (II) complexes remain in distorted tetrahedral coordination environments. The electronic properties such as HOMO and LUMO energies are carried out by gaseous phase DFT/B3LYP calculations using Gaussian 09 program. Complex 1 showed a good binding propensity to the DNA and HSA, during the assessment of docking studies. Schiff base ligand HL and its metal (II) complexes, 1–3 screened for their in vitro antimicrobial activities using the disc diffusion method against selected microbes. Complex 1 shows higher antimicrobial activity than complexes 2, 3 and Schiff base ligand HL. According to the results obtained from the cytotoxic studies, Schiff base ligand HL and its metal (II) complexes 1–3 have better cytotoxicity against MCF‐7 cell lines with potency higher than the currently used chemotherapeutic agent cyclophosphamide.  相似文献   
37.
Two organometallic Ru(II)‐p‐cymene complexes of the type [Ru(η6p‐cymene)(L)Cl]PF6 1 and 2 , where L is N,N‐bis(4‐isopropylbenzylidene)ethane‐1,2‐diamine (bien, L1 ) or N,N‐bis (pyren‐2‐ylmethylene)ethane‐1,2‐diamine (bpen, L2 ) have been prepared and characterized well. Because of appended pyrenyl groups in coordinated bpen ligand, the complex 2 exhibits higher DNA and protein binding than complex 1 in which isopropylbenzyl groups are incorporated. Interestingly, the luminescent characteristic complex 2 is unique in displaying DNA cleavage after light activation by UVA light at 365 nm through oxygen dependent mechanism. AFM analysis attests the photo‐induced DNA fragmentation ability of complex 2 . Also, the complex 2 cleaves the protein after light exposure in a non‐specific manner suggesting that it can act as a protein photo cleaving agent. In contrast to the trend of DNA and protein interaction of complexes, the complex 1 exhibits cytotoxic activity against human breast carcinoma ( MCF‐7 ) and liver carcinoma ( HepG2 ) with potency higher than that of complex 2 due to enhanced hydrophobicity of isopropyl groups present in p‐cymene and bien ligands. Indeed, complex 2 is inactive against MCF‐7 and HepG2 cancer cell lines even up to 200 μM concentration. The AO/EB staining assay reveals that the complex 1 is able to induce late apoptotic mode of cell death in breast cancer cells, which is further confirmed by inter‐nucleosomal DNA cleavage. Furthermore, the complexes 1 and 2 are evaluated for their catalytic activities and found to be working well for the β‐carboline directed C–H arylation to afford the desired products in good yield (40–47%).  相似文献   
38.
The original Sasol catalytic system for ethylene tetramerization is composed of a Cr source, a PNP ligand, and MAO (methylaluminoxane). The use of expensive MAO in excess has been a critical concern in commercial operation. Many efforts have been made to replace MAO with non‐coordinating anions (e.g., [B(C6F5)4]?); however, most of such attempts were unsuccessful. Herein, an extremely active catalytic system that avoids the use of MAO is presented. The successive addition of two equivalent [H(OEt2)2]+[B(C6F5)4]? and one equivalent CrCl3(THF)3 to (acac)AlEt2 and subsequent treatment with a PNP ligand [CH3(CH2)16]2C(H)N(PPh2)2 ( 1 ) yielded a complex presumably formulated as [ 1 ‐CrAl (acac)Cl3(THF)]2+[B(C6F5)4]?2, which exhibited high activity when combined with iBu3Al (1120 kg/g‐Cr/h; ~4 times that of the original Sasol system composed of Cr (acac)3, iPrN(PPh2)2, and MAO). Via the introduction of bulky trialkylsilyl substituents such as –SiMe3, –Si(nBu)3, or –SiMe2(CH2)7CH3 at the para‐position of phenyl groups in 1 (i.e., by using [CH3(CH2)16]2C(H)N[P(C6H4p‐SiR3)2]2 instead of 1 ), the activities were dramatically improved, i.e., tripled (2960–3340 kg/g‐Cr/h; more than 10 times that of the original Sasol system). The generation of significantly less PE (<0.2 wt%) even at a high temperature is another advantage achieved by the introduction of bulky trialkylsilyl substituents. NMR studies and DFT calculations suggest that increase of the steric bulkiness on the alkyl‐N and P‐aryl moieties restrict the free rotation around (alkyl)N–P (aryl) bonds, which may cause the generation of more robust active species in higher proportion, leading to extremely high activity along with the generation of a smaller amount of PE.  相似文献   
39.
The promise of polyhydroxamic acid ligands for the selective chelation of the f-block elements is becoming increasingly more apparent. The initial studies of polyhydroxamic acid siderophores showed the formation of highly stable complexes with PuIV, but a higher preference for FeIII hindered effective applications. The development of synthetic routes toward highly pure and customizable ligands containing multiple hydroxamic acids allowed for the growth of new classes of compounds. Although the first round of these ligands focused on the incorporation of siderophore-like frameworks, the new synthetic strategies led to small molecules of various frameworks and even resins for applications in the field of f-block element separations and biological desorption. Unfortunately, a lack of consistent stability-constant data makes direct comparisons across this body of work difficult. More studies into the stability constants and separations of the f-block elements in a variety of pH ranges is necessary to truly realize the potential for polyhydroxamic acid ligands.  相似文献   
40.
Four flexible ligands with different lengths, degrees of flexibility, and steric bulk were synthesized and used to prepare metal-directed assemblies. Interestingly, minor differences among the ligands led to products with dramatically different topologies: a binuclear D -shaped macrocycle, tetranuclear rectangles, and hexanuclear trefoil knots. The interconversion of the trefoil-shaped complexes was also investigated. This contribution introduces a rare ligand-controlled trefoil–rectangle shape transformation in solution.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号